A Combining Genetic Learning Algorithm and Risk Matrix Model Using in Optimal Production Program

نویسنده

  • Marija Milovanović
چکیده

One of the important issues for any enterprises is the compromise optimal solution between inverse of multi objective functions. The prediction of the production cost and/or profi t per unit of a product and deal with two obverse functions at same time can be extremely diffi cult, especially if there is a lot of confl ict information about production parameters. But the most important is how much risk of this compromise solution. For this reason, the research intrduce and developed a strong and cabable model of genatic algorithim combinding with risk mamagement mtrix to increase the quality of decisions as it is based on quantitive indicators, not on qualititive evaluation. Research results show that integration of genetic algorithim and risk mamagement matrix model has strong signifi cant in the decision making where it power and time to make the right decesion and improve the quality of the decision making as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A production-inventory model with permissible delay incorporating learning effect in random planning horizon using genetic algorithm

This paper presents a production-inventory model for deteriorating items with stock-dependent demand under inflation in a random planning horizon. The supplier offers the retailer fully permissible delay in payment. It is assumed that the time horizon of the business period is random in nature and follows exponential distribution with a known mean. Here learning effect is also introduced for th...

متن کامل

Optimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)

The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...

متن کامل

Retracted: Using genetic algorithm approach to solve a multi-product EPQ model with defective items, rework, and constrained space

The Economic Production Quantity (EPQ) model is often used in the manufacturing sector to assist firms in determining the optimal production lot size that minimizes overall production-inventory costs. There are some assumptions in the EPQ model that restrict this model for real-world applications. Some of these assumptions are (1) infinite space of warehouse, (2) all of the pr...

متن کامل

Selection of an Optimal Hybrid Water/Gas Injection Scenario for Maximization of Oil Recovery Using Genetic Algorithm

Production strategy from a hydrocarbon reservoir plays an important role in optimal field development in the sense of maximizing oil recovery and economic profits. To this end, self-adapting optimization algorithms are necessary due to the great number of variables and the excessive time required for exhaustive simulation runs. Thus, this paper utilizes genetic algorithm (GA), and the objective...

متن کامل

Solving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms

This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012